PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd ext valcom 1 1 2 1 1 1 1 1 1 1 1 5 1 1 1 1 1 2 1

1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (StAlph*)*
5. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. NDA(C) q
11. NDA(q,a,p)
12. i:
13. 0i
14. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
15. i = ||C||-1
16. i+1-||map(c. < 1of(c),a.2of(c) > ;C)|| = 0 1

||2of(map(c. < 1of(c),a.2of(c) > ;C)[i])||1

By: RWH (LemmaC Thm* f:(AB), as:A*, n:||as||. map(f;as)[n] = f(as[n])) 0

Generated subgoal:

1 ||2of((c. < 1of(c),a.2of(c) > )(C[i]))||1


About:
lambdapairconsnatural_numberuniverseallfunctionlist
equalapplyproductsubtractintless_thanadd