At: nd ext valcom 1 1 2 1 1 1 1 1 1 1 1 5 1 1 1 1 2 2 1 1 1 2 1
1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (St
Alph*)*
5. ||C|| > 0
6.
i:
(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. I(NDA) = 1of(hd(C))
11.
i:
(||C||-1).
NDA(1of(C[i]),hd(rev(2of(C[i]))),1of(C[(i+1)])) & 2of(C[(i+1)]) = rev(tl(rev(2of(C[i]))))
12. 1of(hd(rev(C))) = q
13. 2of(hd(rev(C))) = nil
14.
NDA(q,a,p)
15. i: 
16. 0
i
17. i < ||map(
c. < 1of(c),a.2of(c) > ;C)||+1-1
18. i = ||C||-1
19. i+1-||map(
c. < 1of(c),a.2of(c) > ;C)|| = 0
1
20. rev(2of(C[i])) = nil
||rev(2of(C[i]))|| = 0
By: RWH (HypC 20) 0
Generated subgoal:| 1 | ||nil|| = 0 |
About: