PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd ext valcom 1 1 2 1 1 1 1 1 1 1 1 5 1 1 1 1 2 2 1 1 1 2 2

1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (StAlph*)*
5. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. I(NDA) = 1of(hd(C))
11. i:(||C||-1). NDA(1of(C[i]),hd(rev(2of(C[i]))),1of(C[(i+1)])) & 2of(C[(i+1)]) = rev(tl(rev(2of(C[i]))))
12. 1of(hd(rev(C))) = q
13. 2of(hd(rev(C))) = nil
14. NDA(q,a,p)
15. i:
16. 0i
17. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
18. i = ||C||-1
19. i+1-||map(c. < 1of(c),a.2of(c) > ;C)|| = 0 1
20. rev(2of(C[i])) = nil

NDA(1of(C[i]),hd([a]),p)

By: Reduce 0

Generated subgoal:

1 NDA(1of(C[i]),a,p)


About:
applyconsniluniverselistproductnatural_numberall
subtractequalandaddintless_thanlambdapair