Nuprl Lemma : anti_sym_shift
∀[A,B:Type]. ∀[R:A ⟶ A ⟶ ℙ]. ∀[S:B ⟶ B ⟶ ℙ]. ∀[f:A ⟶ B].
  (AntiSym(A;x,y.R[x;y])) supposing (AntiSym(B;x,y.S[x;y]) and RelsIso(A;B;x,y.R[x;y];x,y.S[x;y];f) and Inj(A;B;f))
Proof
Definitions occuring in Statement : 
rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f)
, 
anti_sym: AntiSym(T;x,y.R[x; y])
, 
inject: Inj(A;B;f)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
anti_sym: AntiSym(T;x,y.R[x; y])
, 
rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f)
, 
inject: Inj(A;B;f)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Lemmas referenced : 
anti_sym_wf, 
rels_iso_wf, 
inject_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
axiomEquality, 
universeEquality, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
independent_functionElimination, 
productElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[S:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[f:A  {}\mrightarrow{}  B].
    (AntiSym(A;x,y.R[x;y]))  supposing 
          (AntiSym(B;x,y.S[x;y])  and 
          RelsIso(A;B;x,y.R[x;y];x,y.S[x;y];f)  and 
          Inj(A;B;f))
Date html generated:
2016_05_15-PM-00_03_36
Last ObjectModification:
2015_12_26-PM-11_25_04
Theory : gen_algebra_1
Home
Index