Nuprl Lemma : bilinear_comm_elim
∀[T:Type]. ∀[pl,tm:T ⟶ T ⟶ T].
  (BiLinear(T;pl;tm)) supposing ((∀a,x,y:T.  ((a tm (x pl y)) = ((a tm x) pl (a tm y)) ∈ T)) and Comm(T;tm))
Proof
Definitions occuring in Statement : 
bilinear: BiLinear(T;pl;tm)
, 
comm: Comm(T;op)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
bilinear: BiLinear(T;pl;tm)
, 
comm: Comm(T;op)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
all_wf, 
equal_wf, 
uall_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
hypothesisEquality, 
isect_memberEquality, 
isectElimination, 
because_Cache, 
extract_by_obid, 
cumulativity, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[pl,tm:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].
    (BiLinear(T;pl;tm))  supposing 
          ((\mforall{}a,x,y:T.    ((a  tm  (x  pl  y))  =  ((a  tm  x)  pl  (a  tm  y))))  and 
          Comm(T;tm))
Date html generated:
2017_10_01-AM-08_12_56
Last ObjectModification:
2017_02_28-PM-01_57_11
Theory : gen_algebra_1
Home
Index