Nuprl Lemma : abdgrp_properties
∀[g:AbDGrp]. IsEqFun(|g|;=b)
Proof
Definitions occuring in Statement : 
abdgrp: AbDGrp
, 
grp_eq: =b
, 
grp_car: |g|
, 
eqfun_p: IsEqFun(T;eq)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
abdgrp: AbDGrp
, 
abgrp: AbGrp
, 
grp: Group{i}
, 
mon: Mon
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
eqfun_p: IsEqFun(T;eq)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
infix_ap: x f y
Lemmas referenced : 
abdgrp_wf, 
equal_wf, 
assert_witness, 
assert_wf, 
grp_eq_wf, 
grp_car_wf, 
sq_stable__eqfun_p
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
isect_memberEquality, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[g:AbDGrp].  IsEqFun(|g|;=\msubb{})
Date html generated:
2016_05_15-PM-00_09_41
Last ObjectModification:
2016_01_15-PM-11_06_08
Theory : groups_1
Home
Index