Nuprl Lemma : abdgrp_properties

[g:AbDGrp]. IsEqFun(|g|;=b)


Proof




Definitions occuring in Statement :  abdgrp: AbDGrp grp_eq: =b grp_car: |g| eqfun_p: IsEqFun(T;eq) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T abdgrp: AbDGrp abgrp: AbGrp grp: Group{i} mon: Mon sq_stable: SqStable(P) implies:  Q squash: T eqfun_p: IsEqFun(T;eq) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: infix_ap: y
Lemmas referenced :  abdgrp_wf equal_wf assert_witness assert_wf grp_eq_wf grp_car_wf sq_stable__eqfun_p
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesisEquality hypothesis independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination isect_memberEquality productElimination independent_pairEquality axiomEquality applyEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[g:AbDGrp].  IsEqFun(|g|;=\msubb{})



Date html generated: 2016_05_15-PM-00_09_41
Last ObjectModification: 2016_01_15-PM-11_06_08

Theory : groups_1


Home Index