Nuprl Lemma : abdmonoid_inc
AbDMon ⊆r AbDMon{[i | j]}
Proof
Definitions occuring in Statement : 
abdmonoid: AbDMon
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
abdmonoid: AbDMon
, 
dmon: DMon
, 
mon: Mon
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
subtype_rel_grp, 
monoid_p_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
mon_wf, 
eqfun_p_wf, 
grp_eq_wf, 
dmon_wf, 
comm_wf, 
abdmonoid_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
cut, 
hypothesisEquality, 
applyEquality, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
instantiate, 
isectElimination, 
because_Cache
Latex:
AbDMon  \msubseteq{}r  AbDMon\{[i  |  j]\}
Date html generated:
2019_10_15-AM-10_32_38
Last ObjectModification:
2018_09_17-PM-06_25_25
Theory : groups_1
Home
Index