Nuprl Lemma : mon_when_is_hom

[g:IMonoid]. ∀[b:𝔹].  IsMonHom{g,g}(λp:|g|. when b. p)


Proof




Definitions occuring in Statement :  mon_when: when b. p monoid_hom_p: IsMonHom{M1,M2}(f) imon: IMonoid grp_car: |g| tlambda: λx:T. b[x] bool: 𝔹 uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T monoid_hom_p: IsMonHom{M1,M2}(f) and: P ∧ Q fun_thru_2op: FunThru2op(A;B;opa;opb;f) tlambda: λx:T. b[x] imon: IMonoid
Lemmas referenced :  mon_when_thru_op grp_car_wf mon_when_of_id bool_wf imon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename isect_memberEquality axiomEquality because_Cache productElimination independent_pairEquality

Latex:
\mforall{}[g:IMonoid].  \mforall{}[b:\mBbbB{}].    IsMonHom\{g,g\}(\mlambda{}p:|g|.  when  b.  p)



Date html generated: 2016_05_15-PM-00_18_57
Last ObjectModification: 2015_12_26-PM-11_37_38

Theory : groups_1


Home Index