Nuprl Lemma : bpa-equiv_wf
∀[p:ℕ+]. ∀[x,y:basic-padic(p)].  (bpa-equiv(p;x;y) ∈ ℙ)
Proof
Definitions occuring in Statement : 
bpa-equiv: bpa-equiv(p;x;y)
, 
basic-padic: basic-padic(p)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bpa-equiv: bpa-equiv(p;x;y)
, 
basic-padic: basic-padic(p)
, 
nat_plus: ℕ+
Lemmas referenced : 
equal_wf, 
p-adics_wf, 
p-mul_wf, 
p-int_wf, 
exp_wf2, 
basic-padic_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
spreadEquality, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[x,y:basic-padic(p)].    (bpa-equiv(p;x;y)  \mmember{}  \mBbbP{})
Date html generated:
2018_05_21-PM-03_24_38
Last ObjectModification:
2018_05_19-AM-08_22_10
Theory : rings_1
Home
Index