Nuprl Lemma : bpa-equiv_wf

[p:ℕ+]. ∀[x,y:basic-padic(p)].  (bpa-equiv(p;x;y) ∈ ℙ)


Proof




Definitions occuring in Statement :  bpa-equiv: bpa-equiv(p;x;y) basic-padic: basic-padic(p) nat_plus: + uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bpa-equiv: bpa-equiv(p;x;y) basic-padic: basic-padic(p) nat_plus: +
Lemmas referenced :  equal_wf p-adics_wf p-mul_wf p-int_wf exp_wf2 basic-padic_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule spreadEquality sqequalHypSubstitution productElimination thin independent_pairEquality hypothesisEquality extract_by_obid isectElimination setElimination rename because_Cache hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[x,y:basic-padic(p)].    (bpa-equiv(p;x;y)  \mmember{}  \mBbbP{})



Date html generated: 2018_05_21-PM-03_24_38
Last ObjectModification: 2018_05_19-AM-08_22_10

Theory : rings_1


Home Index