Nuprl Lemma : nsgrp_of_ideal_wf
∀[r:CRng]. ∀[a:Ideal(r){i}].  (a↓+nsgp ∈ NormSubGrp{i}(r↓+gp))
Proof
Definitions occuring in Statement : 
nsgrp_of_ideal: a↓+nsgp
, 
ideal: Ideal(r){i}
, 
add_grp_of_rng: r↓+gp
, 
crng: CRng
, 
norm_subgrp: NormSubGrp{i}(g)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ideal: Ideal(r){i}
, 
norm_subgrp: NormSubGrp{i}(g)
, 
nsgrp_of_ideal: a↓+nsgp
, 
add_grp_of_rng: r↓+gp
, 
grp_car: |g|
, 
pi1: fst(t)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
crng: CRng
, 
rng: Rng
, 
prop: ℙ
, 
subgrp_p: s SubGrp of g
, 
grp_id: e
, 
pi2: snd(t)
, 
grp_inv: ~
, 
grp_op: *
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
ideal_p: S Ideal of R
, 
norm_subset_p: norm_subset_p(g;s)
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
subgrp_p_wf, 
add_grp_of_rng_wf, 
norm_subset_p_wf, 
ideal_wf, 
crng_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_minus_wf, 
rng_plus_comm, 
rng_plus_ac_1, 
rng_plus_inv_assoc, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
sqequalRule, 
hypothesisEquality, 
independent_pairFormation, 
hypothesis, 
productEquality, 
lemma_by_obid, 
isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
lambdaFormation, 
applyEquality, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
lambdaEquality, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[r:CRng].  \mforall{}[a:Ideal(r)\{i\}].    (a\mdownarrow{}+nsgp  \mmember{}  NormSubGrp\{i\}(r\mdownarrow{}+gp))
Date html generated:
2016_05_15-PM-00_23_27
Last ObjectModification:
2015_12_27-AM-00_00_44
Theory : rings_1
Home
Index