Nuprl Lemma : rng_sum_0

[r:Rng]. ∀[a,b:ℤ].  (r) a ≤ j < b. 0) 0 ∈ |r| supposing a ≤ b


Proof




Definitions occuring in Statement :  rng_sum: rng_sum rng: Rng rng_zero: 0 rng_car: |r| uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B int: equal: t ∈ T
Definitions unfolded in proof :  prop: uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] true: True so_apply: x[s] rng: Rng so_lambda: λ2x.t[x] squash: T and: P ∧ Q subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q implies:  Q
Lemmas referenced :  rng_wf le_wf rng_times_sum_l rng_sum_wf rng_car_wf int_seg_wf rng_zero_wf equal_wf squash_wf true_wf rng_times_zero iff_weakening_equal
Rules used in proof :  intEquality independent_isectElimination hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut equalitySymmetry natural_numberEquality because_Cache rename setElimination lambdaEquality sqequalRule applyEquality imageElimination equalityTransitivity universeEquality productElimination functionEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[r:Rng].  \mforall{}[a,b:\mBbbZ{}].    (\mSigma{}(r)  a  \mleq{}  j  <  b.  0)  =  0  supposing  a  \mleq{}  b



Date html generated: 2018_05_21-PM-03_15_15
Last ObjectModification: 2017_12_11-PM-05_10_32

Theory : rings_1


Home Index