Nuprl Lemma : mk_oset_wf
∀[T:Type]. ∀[eq,leq:T ⟶ T ⟶ 𝔹].
(mk_oset(T;eq;leq) ∈ LOSet) supposing (UniformLinorder(T;a,b.↑(a leq b)) and IsEqFun(T;eq))
Proof
Definitions occuring in Statement :
mk_oset: mk_oset(T;eq;leq)
,
loset: LOSet
,
ulinorder: UniformLinorder(T;x,y.R[x; y])
,
eqfun_p: IsEqFun(T;eq)
,
assert: ↑b
,
bool: 𝔹
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
infix_ap: x f y
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
mk_oset: mk_oset(T;eq;leq)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
prop: ℙ
,
so_lambda: λ2x y.t[x; y]
,
infix_ap: x f y
,
so_apply: x[s1;s2]
,
ulinorder: UniformLinorder(T;x,y.R[x; y])
,
and: P ∧ Q
,
uorder: UniformOrder(T;x,y.R[x; y])
,
loset: LOSet
,
poset: POSet{i}
,
qoset: QOSet
,
dset: DSet
,
poset_sig: PosetSig
,
set_car: |p|
,
pi1: fst(t)
,
set_eq: =b
,
pi2: snd(t)
,
set_leq: a ≤ b
,
set_le: ≤b
,
upreorder: UniformPreorder(T;x,y.R[x; y])
Lemmas referenced :
ulinorder_wf,
assert_wf,
eqfun_p_wf,
bool_wf,
set_car_wf,
set_eq_wf,
upreorder_wf,
set_leq_wf,
uanti_sym_wf,
connex_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
extract_by_obid,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
applyEquality,
isect_memberEquality,
because_Cache,
functionEquality,
universeEquality,
productElimination,
dependent_set_memberEquality,
dependent_pairEquality,
productEquality,
independent_pairFormation,
setElimination,
rename
Latex:
\mforall{}[T:Type]. \mforall{}[eq,leq:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbB{}].
(mk\_oset(T;eq;leq) \mmember{} LOSet) supposing (UniformLinorder(T;a,b.\muparrow{}(a leq b)) and IsEqFun(T;eq))
Date html generated:
2018_05_21-PM-03_13_56
Last ObjectModification:
2018_05_19-AM-08_26_35
Theory : sets_1
Home
Index