Nuprl Lemma : module_plus_inv
∀[A:Rng]. ∀[m:A-Module]. ∀[x:m.car].
  (((x m.plus (m.minus x)) = m.zero ∈ m.car) ∧ (((m.minus x) m.plus x) = m.zero ∈ m.car))
Proof
Definitions occuring in Statement : 
module: A-Module, 
alg_minus: a.minus, 
alg_zero: a.zero, 
alg_plus: a.plus, 
alg_car: a.car, 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
and: P ∧ Q, 
apply: f a, 
equal: s = t ∈ T, 
rng: Rng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
rng: Rng, 
and: P ∧ Q, 
group_p: IsGroup(T;op;id;inv), 
monoid_p: IsMonoid(T;op;id), 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f), 
action_p: IsAction(A;x;e;S;f), 
comm: Comm(T;op), 
inverse: Inverse(T;op;id;inv), 
ident: Ident(T;op;id), 
assoc: Assoc(T;op), 
module: A-Module
Lemmas referenced : 
module_properties, 
alg_car_wf, 
rng_car_wf, 
module_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
sqequalRule, 
isect_memberEquality, 
isectElimination, 
independent_pairEquality, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[A:Rng].  \mforall{}[m:A-Module].  \mforall{}[x:m.car].
    (((x  m.plus  (m.minus  x))  =  m.zero)  \mwedge{}  (((m.minus  x)  m.plus  x)  =  m.zero))
Date html generated:
2016_05_16-AM-07_26_34
Last ObjectModification:
2015_12_28-PM-05_07_57
Theory : algebras_1
Home
Index