Nuprl Lemma : sq_stable__alg_hom_p
∀a:RngSig. ∀m,n:algebra_sig{i:l}(|a|). ∀f:m.car ⟶ n.car.  SqStable(alg_hom_p(a; m; n; f))
Proof
Definitions occuring in Statement : 
alg_hom_p: alg_hom_p(a; m; n; f)
, 
alg_car: a.car
, 
algebra_sig: algebra_sig{i:l}(A)
, 
sq_stable: SqStable(P)
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
rng_car: |r|
, 
rng_sig: RngSig
Definitions unfolded in proof : 
alg_hom_p: alg_hom_p(a; m; n; f)
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
implies: P 
⇒ Q
Lemmas referenced : 
sq_stable__and, 
module_hom_p_wf, 
and_wf, 
fun_thru_2op_wf, 
alg_car_wf, 
rng_car_wf, 
alg_times_wf, 
equal_wf, 
alg_one_wf, 
sq_stable__module_hom_p, 
sq_stable__fun_thru_2op, 
sq_stable__equal, 
algebra_sig_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
isect_memberEquality, 
applyEquality, 
independent_functionElimination, 
because_Cache, 
functionEquality
Latex:
\mforall{}a:RngSig.  \mforall{}m,n:algebra\_sig\{i:l\}(|a|).  \mforall{}f:m.car  {}\mrightarrow{}  n.car.    SqStable(alg\_hom\_p(a;  m;  n;  f))
Date html generated:
2016_05_16-AM-07_28_02
Last ObjectModification:
2015_12_28-PM-05_07_36
Theory : algebras_1
Home
Index