Nuprl Lemma : distinct_wf

s:DSet. ∀ps:|s| List.  (distinct{s}(ps) ∈ 𝔹)


Proof




Definitions occuring in Statement :  distinct: distinct{s}(ps) list: List bool: 𝔹 all: x:A. B[x] member: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  distinct: distinct{s}(ps) all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] dset: DSet so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] so_apply: x[s] so_apply: x[s1;s2]
Lemmas referenced :  mon_htfor_wf band_mon_wf set_car_wf ball_wf bnot_wf infix_ap_wf bool_wf set_eq_wf list_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesis applyEquality because_Cache isectElimination setElimination rename hypothesisEquality lambdaEquality

Latex:
\mforall{}s:DSet.  \mforall{}ps:|s|  List.    (distinct\{s\}(ps)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_16-AM-07_37_23
Last ObjectModification: 2015_12_28-PM-05_45_27

Theory : list_2


Home Index