Nuprl Lemma : distinct_wf
∀s:DSet. ∀ps:|s| List.  (distinct{s}(ps) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
distinct: distinct{s}(ps)
, 
list: T List
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
distinct: distinct{s}(ps)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
mon_htfor_wf, 
band_mon_wf, 
set_car_wf, 
ball_wf, 
bnot_wf, 
infix_ap_wf, 
bool_wf, 
set_eq_wf, 
list_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesis, 
applyEquality, 
because_Cache, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
lambdaEquality
Latex:
\mforall{}s:DSet.  \mforall{}ps:|s|  List.    (distinct\{s\}(ps)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_16-AM-07_37_23
Last ObjectModification:
2015_12_28-PM-05_45_27
Theory : list_2
Home
Index