Nuprl Lemma : whole_segment

T:Type. ∀as:T List.  ((as[0..||as||-]) as ∈ (T List))


Proof




Definitions occuring in Statement :  segment: as[m..n-] length: ||as|| list: List all: x:A. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  list_wf segment_factor non_neg_length length_wf_nat length_wf iff_weakening_equal lapp_fact_b
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut equalityEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination because_Cache introduction natural_numberEquality because_SupInf equalityTransitivity equalitySymmetry independent_isectElimination productElimination independent_functionElimination universeEquality

Latex:
\mforall{}T:Type.  \mforall{}as:T  List.    ((as[0..||as||\msupminus{}])  =  as)



Date html generated: 2016_05_16-AM-07_42_36
Last ObjectModification: 2015_12_28-PM-05_41_38

Theory : list_2


Home Index