Nuprl Lemma : segment_factor

T:Type. ∀as:T List. ∀i:{0...||as||}. ∀j:{i...||as||}.  ((as[i..j-]) (Π i ≤ k < j. [as[k]]) ∈ (T List))


Proof




Definitions occuring in Statement :  lapp_imon: <List,@> segment: as[m..n-] select: L[n] length: ||as|| cons: [a b] nil: [] list: List int_iseg: {i...j} all: x:A. B[x] natural_number: $n universe: Type equal: t ∈ T mon_itop: Π lb ≤ i < ub. E[i]
Definitions unfolded in proof :  all: x:A. B[x] segment: as[m..n-] member: t ∈ T uall: [x:A]. B[x] int_iseg: {i...j} squash: T prop: and: P ∧ Q cand: c∧ B guard: {T} decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k so_apply: x[s] imon: IMonoid list: List grp_car: |g| pi1: fst(t) lapp_imon: <List,@> subtract: m
Lemmas referenced :  int_iseg_wf length_wf list_wf equal_wf squash_wf true_wf istype-universe firstn_factor nth_tl_wf subtract_wf int_iseg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf le_wf length_nth_tl iff_weakening_equal mon_itop_wf lapp_imon_wf cons_wf select_wf int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma nil_wf int_seg_wf subtype_rel_self less_than_wf grp_car_wf imon_wf select_nth_tl imon_subtype_grp_sig itermAdd_wf int_term_value_add_lemma add-associates minus-one-mul add-swap add-commutes add-mul-special zero-mul zero-add mon_itop_shift
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality natural_numberEquality universeEquality applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry inhabitedIsType dependent_functionElimination dependent_set_memberEquality_alt because_Cache productElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation imageMemberEquality baseClosed productIsType instantiate functionIsType addEquality multiplyEquality minusEquality

Latex:
\mforall{}T:Type.  \mforall{}as:T  List.  \mforall{}i:\{0...||as||\}.  \mforall{}j:\{i...||as||\}.    ((as[i..j\msupminus{}])  =  (\mPi{}  i  \mleq{}  k  <  j.  [as[k]]))



Date html generated: 2019_10_16-PM-01_05_36
Last ObjectModification: 2018_10_08-AM-10_53_43

Theory : list_2


Home Index