Nuprl Lemma : lapp_imon_wf

T:Type. (<List,@> ∈ IMonoid)


Proof




Definitions occuring in Statement :  lapp_imon: <List,@> all: x:A. B[x] member: t ∈ T universe: Type imon: IMonoid
Definitions unfolded in proof :  lapp_imon: <List,@> member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a assoc: Assoc(T;op) infix_ap: y top: Top ident: Ident(T;op;id) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] and: P ∧ Q cand: c∧ B
Lemmas referenced :  list_wf btrue_wf append_wf nil_wf mk_imon append_assoc list_ind_nil_lemma append_back_nil
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality universeEquality lambdaFormation independent_isectElimination isect_memberFormation_alt isect_memberEquality voidElimination voidEquality inhabitedIsType axiomEquality because_Cache universeIsType dependent_functionElimination independent_pairFormation productElimination independent_pairEquality

Latex:
\mforall{}T:Type.  (<T  List,@>  \mmember{}  IMonoid)



Date html generated: 2019_10_16-PM-01_03_01
Last ObjectModification: 2018_09_26-PM-08_14_33

Theory : list_2


Home Index