Nuprl Lemma : lapp_imon_wf
∀T:Type. (<T List,@> ∈ IMonoid)
Proof
Definitions occuring in Statement : 
lapp_imon: <T List,@>
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
imon: IMonoid
Definitions unfolded in proof : 
lapp_imon: <T List,@>
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
top: Top
, 
ident: Ident(T;op;id)
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
list_wf, 
btrue_wf, 
append_wf, 
nil_wf, 
mk_imon, 
append_assoc, 
list_ind_nil_lemma, 
append_back_nil
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
universeEquality, 
lambdaFormation, 
independent_isectElimination, 
isect_memberFormation_alt, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
inhabitedIsType, 
axiomEquality, 
because_Cache, 
universeIsType, 
dependent_functionElimination, 
independent_pairFormation, 
productElimination, 
independent_pairEquality
Latex:
\mforall{}T:Type.  (<T  List,@>  \mmember{}  IMonoid)
Date html generated:
2019_10_16-PM-01_03_01
Last ObjectModification:
2018_09_26-PM-08_14_33
Theory : list_2
Home
Index