Nuprl Lemma : non_neg_mset_size

s:DSet. ∀a:MSet{s}.  (size{s}(a) ≥ )


Proof




Definitions occuring in Statement :  mset_size: size{s}(a) mset: MSet{s} ge: i ≥  all: x:A. B[x] natural_number: $n dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T ge: i ≥  sq_stable: SqStable(P) implies:  Q mset: MSet{s} prop: quotient: x,y:A//B[x; y] and: P ∧ Q dset: DSet mset_size: size{s}(a) squash: T
Lemmas referenced :  sq_stable__le mset_size_wf squash_wf ge_wf list_wf set_car_wf non_neg_length permr_wf equal_wf equal-wf-base mset_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality dependent_functionElimination hypothesisEquality hypothesis independent_functionElimination pointwiseFunctionalityForEquality sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry setElimination rename because_Cache imageMemberEquality baseClosed productEquality

Latex:
\mforall{}s:DSet.  \mforall{}a:MSet\{s\}.    (size\{s\}(a)  \mgeq{}  0  )



Date html generated: 2017_10_01-AM-09_59_31
Last ObjectModification: 2017_03_03-PM-01_00_36

Theory : mset


Home Index