Nuprl Lemma : perm_grp_inverse
∀[T:Type]. ∀[a:Perm(T)].  ((a O inv_perm(a) = id_perm() ∈ Perm(T)) ∧ (inv_perm(a) O a = id_perm() ∈ Perm(T)))
Proof
Definitions occuring in Statement : 
comp_perm: comp_perm, 
inv_perm: inv_perm(p)
, 
id_perm: id_perm()
, 
perm: Perm(T)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
perm_igrp: perm_igrp(T)
, 
mk_igrp: mk_igrp(T;op;id;inv)
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
, 
grp_inv: ~
, 
grp_id: e
, 
infix_ap: x f y
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
grp_inverse, 
perm_igrp_wf, 
perm_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
dependent_functionElimination, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a:Perm(T)].    ((a  O  inv\_perm(a)  =  id\_perm())  \mwedge{}  (inv\_perm(a)  O  a  =  id\_perm()))
Date html generated:
2016_05_16-AM-07_29_20
Last ObjectModification:
2015_12_28-PM-05_36_30
Theory : perms_1
Home
Index