Nuprl Lemma : perm_grp_inverse

[T:Type]. ∀[a:Perm(T)].  ((a inv_perm(a) id_perm() ∈ Perm(T)) ∧ (inv_perm(a) id_perm() ∈ Perm(T)))


Proof




Definitions occuring in Statement :  comp_perm: comp_perm inv_perm: inv_perm(p) id_perm: id_perm() perm: Perm(T) uall: [x:A]. B[x] and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T perm_igrp: perm_igrp(T) mk_igrp: mk_igrp(T;op;id;inv) grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) grp_inv: ~ grp_id: e infix_ap: y and: P ∧ Q all: x:A. B[x]
Lemmas referenced :  grp_inverse perm_igrp_wf perm_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule isect_memberEquality productElimination independent_pairEquality axiomEquality dependent_functionElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:Perm(T)].    ((a  O  inv\_perm(a)  =  id\_perm())  \mwedge{}  (inv\_perm(a)  O  a  =  id\_perm()))



Date html generated: 2016_05_16-AM-07_29_20
Last ObjectModification: 2015_12_28-PM-05_36_30

Theory : perms_1


Home Index