Nuprl Lemma : trivial_sym_grp

p:Sym(1). (p id_perm() ∈ Sym(1))


Proof




Definitions occuring in Statement :  sym_grp: Sym(n) id_perm: id_perm() all: x:A. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T sym_grp: Sym(n) uall: [x:A]. B[x] perm: Perm(T) prop: id_perm: id_perm() perm_sig: perm_sig(T) mk_perm: mk_perm(f;b)
Lemmas referenced :  perm_wf int_seg_wf perm_properties inv_funs_wf perm_f_wf perm_b_wf trivial_nat1_fun
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality hypothesis hypothesisEquality setElimination rename dependent_set_memberEquality_alt productElimination dependent_pairEquality_alt inhabitedIsType

Latex:
\mforall{}p:Sym(1).  (p  =  id\_perm())



Date html generated: 2019_10_16-PM-01_00_16
Last ObjectModification: 2018_10_08-AM-09_08_23

Theory : perms_1


Home Index