Nuprl Lemma : trivial_sym_grp
∀p:Sym(1). (p = id_perm() ∈ Sym(1))
Proof
Definitions occuring in Statement : 
sym_grp: Sym(n)
, 
id_perm: id_perm()
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
sym_grp: Sym(n)
, 
uall: ∀[x:A]. B[x]
, 
perm: Perm(T)
, 
prop: ℙ
, 
id_perm: id_perm()
, 
perm_sig: perm_sig(T)
, 
mk_perm: mk_perm(f;b)
Lemmas referenced : 
perm_wf, 
int_seg_wf, 
perm_properties, 
inv_funs_wf, 
perm_f_wf, 
perm_b_wf, 
trivial_nat1_fun
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
productElimination, 
dependent_pairEquality_alt, 
inhabitedIsType
Latex:
\mforall{}p:Sym(1).  (p  =  id\_perm())
Date html generated:
2019_10_16-PM-01_00_16
Last ObjectModification:
2018_10_08-AM-09_08_23
Theory : perms_1
Home
Index