Nuprl Lemma : trivial_nat1_fun
∀f:ℕ1 ⟶ ℕ1. (f = Id ∈ (ℕ1 ⟶ ℕ1))
Proof
Definitions occuring in Statement : 
identity: Id
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
identity: Id
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
decidable__lt, 
decidable__le, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
intformless_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
lelt_wf, 
int_seg_properties, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
functionEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
functionExtensionality, 
dependent_functionElimination, 
hypothesisEquality, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
intEquality, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
because_Cache
Latex:
\mforall{}f:\mBbbN{}1  {}\mrightarrow{}  \mBbbN{}1.  (f  =  Id)
Date html generated:
2016_05_16-AM-07_32_08
Last ObjectModification:
2016_01_16-PM-10_06_08
Theory : perms_1
Home
Index