Nuprl Lemma : trivial_nat1_fun

f:ℕ1 ⟶ ℕ1. (f Id ∈ (ℕ1 ⟶ ℕ1))


Proof




Definitions occuring in Statement :  identity: Id int_seg: {i..j-} all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] identity: Id guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top
Lemmas referenced :  decidable__lt decidable__le int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf intformless_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__equal_int lelt_wf int_seg_properties int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation functionEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis functionExtensionality dependent_functionElimination hypothesisEquality sqequalRule applyEquality lambdaEquality setElimination rename setEquality intEquality productElimination equalityTransitivity equalitySymmetry unionElimination independent_isectElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality because_Cache

Latex:
\mforall{}f:\mBbbN{}1  {}\mrightarrow{}  \mBbbN{}1.  (f  =  Id)



Date html generated: 2016_05_16-AM-07_32_08
Last ObjectModification: 2016_01_16-PM-10_06_08

Theory : perms_1


Home Index