Nuprl Lemma : rng_p_wf
∀r:RngSig. (rng_p(r) ∈ ℙ)
Proof
Definitions occuring in Statement : 
rng_p: rng_p(r)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
rng_sig: RngSig
Definitions unfolded in proof : 
rng_p: rng_p(r)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
and_wf, 
grp_p_wf, 
add_grp_of_rng_wf, 
mon_p_wf, 
mul_mon_of_rng_wf, 
bilinear_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_times_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis
Latex:
\mforall{}r:RngSig.  (rng\_p(r)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_16-AM-08_13_56
Last ObjectModification:
2015_12_28-PM-06_09_23
Theory : polynom_1
Home
Index