Nuprl Lemma : rng_p_wf

r:RngSig. (rng_p(r) ∈ ℙ)


Proof




Definitions occuring in Statement :  rng_p: rng_p(r) prop: all: x:A. B[x] member: t ∈ T rng_sig: RngSig
Definitions unfolded in proof :  rng_p: rng_p(r) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  and_wf grp_p_wf add_grp_of_rng_wf mon_p_wf mul_mon_of_rng_wf bilinear_wf rng_car_wf rng_plus_wf rng_times_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis

Latex:
\mforall{}r:RngSig.  (rng\_p(r)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_16-AM-08_13_56
Last ObjectModification: 2015_12_28-PM-06_09_23

Theory : polynom_1


Home Index