Nuprl Lemma : oal_merge_preserves_le

s:LOSet. ∀g:OGrp. ∀ps,qs,rs:|oal(s;g)|.  ((qs ≤{s,g} rs)  ((ps ++ qs) ≤{s,g} (ps ++ rs)))


Proof




Definitions occuring in Statement :  oal_le: ps ≤{s,g} qs oal_merge: ps ++ qs oalist: oal(a;b) all: x:A. B[x] implies:  Q ocgrp: OGrp loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: subtype_rel: A ⊆B uall: [x:A]. B[x] guard: {T} uimplies: supposing a grp_leq: a ≤ b oal_grp: oal_grp(s;g) grp_le: b pi2: snd(t) pi1: fst(t) infix_ap: y oal_le: ps ≤{s,g} qs grp_op: * ocgrp: OGrp oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| dset_list: List set_prod: s × t dset_of_mon: g↓set grp_car: |g|
Lemmas referenced :  oal_le_wf ocgrp_subtype_abdgrp set_car_wf oalist_wf ocmon_subtype_abdmonoid ocgrp_subtype_ocmon subtype_rel_transitivity ocgrp_wf ocmon_wf abdmonoid_wf loset_wf grp_op_preserves_le oal_grp_wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality hypothesis sqequalRule isectElimination instantiate independent_isectElimination because_Cache lambdaEquality setElimination rename

Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.  \mforall{}ps,qs,rs:|oal(s;g)|.    ((qs  \mleq{}\{s,g\}  rs)  {}\mRightarrow{}  ((ps  ++  qs)  \mleq{}\{s,g\}  (ps  ++  rs)))



Date html generated: 2016_05_16-AM-08_22_12
Last ObjectModification: 2015_12_28-PM-06_28_17

Theory : polynom_2


Home Index