Nuprl Lemma : oal_neg_sd_ordered

a:LOSet. ∀b:AbMon. ∀ps:(|a| × |b|) List.  ((↑sd_ordered(map(λx.(fst(x));ps)))  (↑sd_ordered(map(λx.(fst(x));--ps))))


Proof




Definitions occuring in Statement :  oal_neg: --ps sd_ordered: sd_ordered(as) map: map(f;as) list: List assert: b pi1: fst(t) all: x:A. B[x] implies:  Q lambda: λx.A[x] product: x:A × B[x] abmonoid: AbMon grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) and: P ∧ Q uiff: uiff(P;Q) guard: {T} true: True prop: squash: T uimplies: supposing a pi1: fst(t) mon: Mon abmonoid: AbMon dset: DSet qoset: QOSet poset: POSet{i} loset: LOSet member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  assert_functionality_wrt_uiff sd_ordered_wf map_wf set_car_wf grp_car_wf oal_neg_wf squash_wf true_wf list_wf dset_wf oal_neg_keys_invar assert_wf abmonoid_wf loset_wf
Rules used in proof :  baseClosed imageMemberEquality natural_numberEquality equalitySymmetry equalityTransitivity imageElimination applyEquality independent_isectElimination sqequalRule productElimination lambdaEquality because_Cache productEquality hypothesis hypothesisEquality rename setElimination dependent_functionElimination thin isectElimination sqequalHypSubstitution lemma_by_obid cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbMon.  \mforall{}ps:(|a|  \mtimes{}  |b|)  List.
    ((\muparrow{}sd\_ordered(map(\mlambda{}x.(fst(x));ps)))  {}\mRightarrow{}  (\muparrow{}sd\_ordered(map(\mlambda{}x.(fst(x));--ps))))



Date html generated: 2016_05_16-AM-08_19_06
Last ObjectModification: 2016_01_16-PM-11_57_14

Theory : polynom_2


Home Index