Nuprl Lemma : mset_inc_a

g:OCMon. (MSet{g↓oset} ⊆MSet{g↓set})


Proof




Definitions occuring in Statement :  mset: MSet{s} subtype_rel: A ⊆B all: x:A. B[x] oset_of_ocmon: g↓oset ocmon: OCMon dset_of_mon: g↓set
Definitions unfolded in proof :  all: x:A. B[x] oset_of_ocmon: g↓oset uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  subtype_rel_self mset_wf dset_of_mon_wf abdmonoid_dmon ocmon_subtype_abdmonoid subtype_rel_transitivity ocmon_wf abdmonoid_wf dmon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality applyEquality instantiate independent_isectElimination

Latex:
\mforall{}g:OCMon.  (MSet\{g\mdownarrow{}oset\}  \msubseteq{}r  MSet\{g\mdownarrow{}set\})



Date html generated: 2019_10_16-PM-01_09_07
Last ObjectModification: 2018_09_17-PM-06_14_30

Theory : polynom_3


Home Index