Nuprl Lemma : seg_sum_shift

p,q:. L: List.  (seg_sum(p;q;L) = seg_sum(p - 1;q - 1;tl(L)))


Proof




Definitions occuring in Statement :  seg_sum: seg_sum(p;q;L) tl: tl(l) list: T List nat_plus: all: x:A. B[x] subtract: n - m natural_number: $n int: equal: s = t
Definitions :  all: x:A. B[x] member: t  T exists: x:A. B[x] segment: as[m..n] seg_sum: seg_sum(p;q;L) nth_tl: nth_tl(n;as) implies: P  Q btrue: tt ifthenelse: if b then t else f fi  not: A bfalse: ff subtype_rel: A r B uall: [x:A]. B[x] nat_plus: bool: unit: Unit uiff: uiff(P;Q) and: P  Q uimplies: b supposing a le: A  B false: False or: P  Q sq_type: SQType(T) guard: {T} bnot: b assert: b prop: it:
Lemmas :  list_wf nat_plus_wf seg_sum_wf tl_wf equal-wf-base-T int_subtype_base equal-wf-T-base le_int_wf bool_wf eqtt_to_assert assert_of_le_int l_sum_wf firstn_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf nth_tl_wf
\mforall{}p,q:\mBbbN{}\msupplus{}.  \mforall{}L:\mBbbZ{}  List.    (seg\_sum(p;q;L)  =  seg\_sum(p  -  1;q  -  1;tl(L)))



Date html generated: 2014_03_27-PM-01_47_21
Last ObjectModification: 2013_11_04-PM-01_11_58

Home Index