Nuprl Lemma : E-interface-pair

[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)].  E((X,Y)) E(Y) ∈ Type supposing E(Y) ⊆E(X)


Proof




Definitions occuring in Statement :  es-interface-pair: (X,Y) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top universe: Type equal: t ∈ T
Lemmas :  es-E_wf event-ordering+_subtype is-interface-pair in-eclass_wf bool_wf eqtt_to_assert assert_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot false_wf subtype_rel_wf es-E-interface_wf assert_elim

Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].    E((X,Y))  =  E(Y)  supposing  E(Y)  \msubseteq{}r  E(X)



Date html generated: 2015_07_21-PM-04_21_37
Last ObjectModification: 2015_01_27-PM-05_16_59

Home Index