Nuprl Lemma : cp-test_wf

[T:Type]. ∀[cp:ClassProgram(T)]. ∀[i:{i:Id| (i ∈ cp-domain(cp))} ].
  (cp-test(cp;i) ∈ k:{k:Knd| (k ∈ cp-kinds(cp) i)}  ─→ cp-ktype(cp;i;k) ─→ cp-state-type(cp;i) ─→ (T Top))


Proof




Definitions occuring in Statement :  cp-test: cp-test(cp;i) cp-state-type: cp-state-type(cp;i) cp-ktype: cp-ktype(cp;i;k) cp-kinds: cp-kinds(cp) cp-domain: cp-domain(cp) class-program: ClassProgram(T) Knd: Knd Id: Id l_member: (x ∈ l) uall: [x:A]. B[x] top: Top member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ─→ B[x] union: left right universe: Type
Lemmas :  fpf-ap_wf list_wf Knd_wf assert_wf hasloc_wf l_member_wf subtype_rel_list top_wf id-deq_wf member-fpf-dom subtype_base_sq bool_wf bool_subtype_base iff_imp_equal_bool fpf-dom_wf btrue_wf true_wf set_wf Id_wf fpf-domain_wf subtype-fpf2 subtype_top fpf_wf
\mforall{}[T:Type].  \mforall{}[cp:ClassProgram(T)].  \mforall{}[i:\{i:Id|  (i  \mmember{}  cp-domain(cp))\}  ].
    (cp-test(cp;i)  \mmember{}  k:\{k:Knd|  (k  \mmember{}  cp-kinds(cp)  i)\} 
      {}\mrightarrow{}  cp-ktype(cp;i;k)
      {}\mrightarrow{}  cp-state-type(cp;i)
      {}\mrightarrow{}  (T  +  Top))



Date html generated: 2015_07_17-AM-11_59_42
Last ObjectModification: 2015_01_28-AM-00_40_25

Home Index