Nuprl Lemma : eclass2-bag-classrel

[Info,B,C:Type]. ∀[X:EClass(bag(B) ─→ bag(C))]. ∀[Y:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
  uiff(v ∈ eclass2-bag(X;Y)(e);↓∃f:bag(B) ─→ bag(C). (f ∈ X(e) ∧ v ↓∈ Y(e)))


Proof




Definitions occuring in Statement :  eclass2-bag: eclass2-bag(X;Y) classrel: v ∈ X(e) class-ap: X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type bag-member: x ↓∈ bs bag: bag(T)
Lemmas :  squash_wf exists_wf bag_wf bag-member_wf class-ap_wf iff_weakening_uiff bag-combine_wf bag-member-combine uiff_wf classrel_wf eclass2-bag_wf es-E_wf event-ordering+_subtype event-ordering+_wf eclass_wf
\mforall{}[Info,B,C:Type].  \mforall{}[X:EClass(bag(B)  {}\mrightarrow{}  bag(C))].  \mforall{}[Y:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:C].
    uiff(v  \mmember{}  eclass2-bag(X;Y)(e);\mdownarrow{}\mexists{}f:bag(B)  {}\mrightarrow{}  bag(C).  (f  \mmember{}  X(e)  \mwedge{}  v  \mdownarrow{}\mmember{}  f  Y(e)))



Date html generated: 2015_07_17-PM-00_38_58
Last ObjectModification: 2015_01_27-PM-11_16_10

Home Index