Nuprl Lemma : eclass2-bag-classrel
∀[Info,B,C:Type]. ∀[X:EClass(bag(B) ─→ bag(C))]. ∀[Y:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
uiff(v ∈ eclass2-bag(X;Y)(e);↓∃f:bag(B) ─→ bag(C). (f ∈ X(e) ∧ v ↓∈ f Y(e)))
Proof
Definitions occuring in Statement :
eclass2-bag: eclass2-bag(X;Y)
,
classrel: v ∈ X(e)
,
class-ap: X(e)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-E: E
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
exists: ∃x:A. B[x]
,
squash: ↓T
,
and: P ∧ Q
,
apply: f a
,
function: x:A ─→ B[x]
,
universe: Type
,
bag-member: x ↓∈ bs
,
bag: bag(T)
Lemmas :
squash_wf,
exists_wf,
bag_wf,
bag-member_wf,
class-ap_wf,
iff_weakening_uiff,
bag-combine_wf,
bag-member-combine,
uiff_wf,
classrel_wf,
eclass2-bag_wf,
es-E_wf,
event-ordering+_subtype,
event-ordering+_wf,
eclass_wf
\mforall{}[Info,B,C:Type]. \mforall{}[X:EClass(bag(B) {}\mrightarrow{} bag(C))]. \mforall{}[Y:EClass(B)]. \mforall{}[es:EO+(Info)]. \mforall{}[e:E]. \mforall{}[v:C].
uiff(v \mmember{} eclass2-bag(X;Y)(e);\mdownarrow{}\mexists{}f:bag(B) {}\mrightarrow{} bag(C). (f \mmember{} X(e) \mwedge{} v \mdownarrow{}\mmember{} f Y(e)))
Date html generated:
2015_07_17-PM-00_38_58
Last ObjectModification:
2015_01_27-PM-11_16_10
Home
Index