Nuprl Lemma : eclass2-bag-classrel
∀[Info,B,C:Type]. ∀[X:EClass(bag(B) ─→ bag(C))]. ∀[Y:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
  uiff(v ∈ eclass2-bag(X;Y)(e);↓∃f:bag(B) ─→ bag(C). (f ∈ X(e) ∧ v ↓∈ f Y(e)))
Proof
Definitions occuring in Statement : 
eclass2-bag: eclass2-bag(X;Y)
, 
classrel: v ∈ X(e)
, 
class-ap: X(e)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
bag-member: x ↓∈ bs
, 
bag: bag(T)
Lemmas : 
squash_wf, 
exists_wf, 
bag_wf, 
bag-member_wf, 
class-ap_wf, 
iff_weakening_uiff, 
bag-combine_wf, 
bag-member-combine, 
uiff_wf, 
classrel_wf, 
eclass2-bag_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
eclass_wf
\mforall{}[Info,B,C:Type].  \mforall{}[X:EClass(bag(B)  {}\mrightarrow{}  bag(C))].  \mforall{}[Y:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:C].
    uiff(v  \mmember{}  eclass2-bag(X;Y)(e);\mdownarrow{}\mexists{}f:bag(B)  {}\mrightarrow{}  bag(C).  (f  \mmember{}  X(e)  \mwedge{}  v  \mdownarrow{}\mmember{}  f  Y(e)))
Date html generated:
2015_07_17-PM-00_38_58
Last ObjectModification:
2015_01_27-PM-11_16_10
Home
Index