Nuprl Lemma : es-E-interface_functionality-iff
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)].  uiff(E(X) ⊆r E(Y);{∀[e:E]. ↑e ∈b Y supposing ↑e ∈b X})
Proof
Definitions occuring in Statement : 
es-E-interface: E(X)
, 
in-eclass: e ∈b X
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
guard: {T}
, 
universe: Type
Lemmas : 
assert_witness, 
in-eclass_wf, 
assert_wf, 
es-E_wf, 
event-ordering+_subtype, 
subtype_rel_wf, 
subtype_rel_sets, 
uall_wf, 
isect_wf, 
eclass_wf, 
top_wf, 
event-ordering+_wf, 
set_wf, 
assert_elim, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
equal_wf
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].
    uiff(E(X)  \msubseteq{}r  E(Y);\{\mforall{}[e:E].  \muparrow{}e  \mmember{}\msubb{}  Y  supposing  \muparrow{}e  \mmember{}\msubb{}  X\})
Date html generated:
2015_07_17-PM-00_56_27
Last ObjectModification:
2015_01_27-PM-10_46_53
Home
Index