Nuprl Lemma : es-E-interface_functionality-iff

[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)].  uiff(E(X) ⊆E(Y);{∀[e:E]. ↑e ∈b supposing ↑e ∈b X})


Proof




Definitions occuring in Statement :  es-E-interface: E(X) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top guard: {T} universe: Type
Lemmas :  assert_witness in-eclass_wf assert_wf es-E_wf event-ordering+_subtype subtype_rel_wf subtype_rel_sets uall_wf isect_wf eclass_wf top_wf event-ordering+_wf set_wf assert_elim subtype_base_sq bool_wf bool_subtype_base equal_wf
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].
    uiff(E(X)  \msubseteq{}r  E(Y);\{\mforall{}[e:E].  \muparrow{}e  \mmember{}\msubb{}  Y  supposing  \muparrow{}e  \mmember{}\msubb{}  X\})



Date html generated: 2015_07_17-PM-00_56_27
Last ObjectModification: 2015_01_27-PM-10_46_53

Home Index