Nuprl Lemma : filter-image_functionality

[Info,T,A,B:Type]. ∀[f:A ─→ bag(T)]. ∀[g:B ─→ bag(T)]. ∀[X:EClass(A)]. ∀[Y:EClass(B)].
  f[X] g[Y] ∈ EClass(T) 
  supposing ∀es:EO+(Info). ∀e:E.  ((↑e ∈b ⇐⇒ ↑e ∈b Y) ∧ ((↑e ∈b X)  (↑e ∈b Y)  ((f X(e)) (g Y(e)) ∈ bag(T))))


Proof




Definitions occuring in Statement :  es-filter-image: f[X] eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type equal: t ∈ T bag: bag(T)
Lemmas :  all_wf event-ordering+_wf es-E_wf event-ordering+_subtype iff_wf assert_wf in-eclass_wf es-interface-subtype_rel2 top_wf bag_wf eclass-val_wf eclass_wf bool_wf eqtt_to_assert uiff_transitivity equal-wf-T-base bnot_wf not_wf eqff_to_assert assert_of_bnot es-E-interface-property
\mforall{}[Info,T,A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  bag(T)].  \mforall{}[g:B  {}\mrightarrow{}  bag(T)].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].
    f[X]  =  g[Y] 
    supposing  \mforall{}es:EO+(Info).  \mforall{}e:E.
                            ((\muparrow{}e  \mmember{}\msubb{}  X  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e  \mmember{}\msubb{}  Y)  \mwedge{}  ((\muparrow{}e  \mmember{}\msubb{}  X)  {}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  Y)  {}\mRightarrow{}  ((f  X(e))  =  (g  Y(e)))))



Date html generated: 2015_07_17-PM-01_08_47
Last ObjectModification: 2015_01_27-PM-10_36_22

Home Index