Nuprl Lemma : fpf-as-apply-alist

[A,B:Type]. ∀[f:a:A fp-> B]. ∀[eq:EqDecider(A)].
  (f = <fpf-domain(f), λx.outl(apply-alist(eq;map(λx.<x, f(x)>;fpf-domain(f));x))> ∈ a:A fp-> B)


Proof




Definitions occuring in Statement :  fpf-ap: f(x) fpf-domain: fpf-domain(f) fpf: a:A fp-> B[a] apply-alist: apply-alist(eq;L;x) deq: EqDecider(T) map: map(f;as) outl: outl(x) uall: [x:A]. B[x] lambda: λx.A[x] pair: <a, b> universe: Type equal: t ∈ T
Lemmas :  map_wf l_member_wf list-subtype set_wf deq_wf fpf_wf apply-alist-cases subtype_rel_list top_wf subtype_rel_product alist-domain-first map-length lelt_wf length_wf map_select select_wf sq_stable__le and_wf equal_wf pi1_wf_top pi2_wf
\mforall{}[A,B:Type].  \mforall{}[f:a:A  fp->  B].  \mforall{}[eq:EqDecider(A)].
    (f  =  <fpf-domain(f),  \mlambda{}x.outl(apply-alist(eq;map(\mlambda{}x.<x,  f(x)>fpf-domain(f));x))>)



Date html generated: 2015_07_17-AM-09_16_36
Last ObjectModification: 2015_01_28-AM-07_53_40

Home Index