Nuprl Lemma : fpf-cap-subtype_functionality_wrt_sub2

[A1,A2,A3:Type]. ∀[d,d':EqDecider(A3)]. ∀[d2:EqDecider(A2)]. ∀[f:a:A1 fp-> Type]. ∀[g:a:A2 fp-> Type]. ∀[x:A3].
  ({g(x)?Top ⊆f(x)?Top supposing f ⊆ g}) supposing (strong-subtype(A2;A3) and strong-subtype(A1;A2))


Proof




Definitions occuring in Statement :  fpf-sub: f ⊆ g fpf-cap: f(x)?z fpf: a:A fp-> B[a] deq: EqDecider(T) strong-subtype: strong-subtype(A;B) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top guard: {T} universe: Type
Lemmas :  decidable__assert fpf-dom_wf subtype-fpf3 top_wf subtype_top subtype_rel_self fpf-cap_wf subtype_rel_wf fpf-cap_functionality_wrt_sub assert_wf fpf-dom-type2 subtype-fpf2 fpf-dom_functionality2 strong-subtype-deq-subtype bool_wf equal-wf-T-base bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot
\mforall{}[A1,A2,A3:Type].  \mforall{}[d,d':EqDecider(A3)].  \mforall{}[d2:EqDecider(A2)].  \mforall{}[f:a:A1  fp->  Type].
\mforall{}[g:a:A2  fp->  Type].  \mforall{}[x:A3].
    (\{g(x)?Top  \msubseteq{}r  f(x)?Top  supposing  f  \msubseteq{}  g\})  supposing 
          (strong-subtype(A2;A3)  and 
          strong-subtype(A1;A2))



Date html generated: 2015_07_17-AM-09_18_25
Last ObjectModification: 2015_01_28-AM-07_58_43

Home Index