Nuprl Lemma : fpf-compatible-join-cap

[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[f,g:a:A fp-> B[a]]. ∀[x:A]. ∀[z:B[x]].
  f ⊕ g(x)?z g(x)?f(x)?z ∈ B[x] supposing || g


Proof




Definitions occuring in Statement :  fpf-join: f ⊕ g fpf-compatible: || g fpf-cap: f(x)?z fpf: a:A fp-> B[a] deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  fpf-compatible_wf fpf_wf deq_wf fpf-dom_wf fpf-join_wf top_wf subtype-fpf2 subtype_top bool_wf fpf-join-dom equal-wf-T-base assert_wf bnot_wf not_wf fpf-join-ap-left fpf-ap_wf iff_weakening_equal or_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot fpf-join-ap-sq
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f,g:a:A  fp->  B[a]].  \mforall{}[x:A].  \mforall{}[z:B[x]].
    f  \moplus{}  g(x)?z  =  g(x)?f(x)?z  supposing  f  ||  g



Date html generated: 2015_07_17-AM-11_13_31
Last ObjectModification: 2015_02_04-PM-05_05_59

Home Index