Nuprl Lemma : fpf-compatible-join

[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[f,g,h:a:A fp-> B[a]].  (h || f ⊕ g) supposing (h || and || f)


Proof




Definitions occuring in Statement :  fpf-join: f ⊕ g fpf-compatible: || g fpf: a:A fp-> B[a] deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type
Lemmas :  assert_wf fpf-dom_wf subtype-fpf2 top_wf subtype_top fpf-join_wf fpf-compatible_wf fpf_wf deq_wf bool_wf equal-wf-T-base bnot_wf not_wf fpf-ap_wf fpf-join-ap iff_weakening_equal eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot fpf-join-dom
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f,g,h:a:A  fp->  B[a]].
    (h  ||  f  \moplus{}  g)  supposing  (h  ||  g  and  h  ||  f)



Date html generated: 2015_07_17-AM-11_12_08
Last ObjectModification: 2015_02_04-PM-05_06_39

Home Index