Nuprl Lemma : fpf-join-compatible-right
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B,C,D,E,F,G:A ─→ Type]. ∀[f:a:A fp-> B[a]]. ∀[g:a:A fp-> C[a]]. ∀[h:a:A fp-> D[a]].
({(h || f ⊕ g) supposing (h || g and h || f)}) supposing
((∀a:A. (E[a] ⊆r G[a])) and
(∀a:A. (F[a] ⊆r G[a])) and
(∀a:A. (D[a] ⊆r F[a])) and
(∀a:A. (D[a] ⊆r E[a])) and
(∀a:A. (C[a] ⊆r F[a])) and
(∀a:A. (B[a] ⊆r E[a])))
Proof
Definitions occuring in Statement :
fpf-join: f ⊕ g
,
fpf-compatible: f || g
,
fpf: a:A fp-> B[a]
,
deq: EqDecider(T)
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
guard: {T}
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
function: x:A ─→ B[x]
,
universe: Type
Lemmas :
fpf-join-dom2,
assert_wf,
fpf-dom_wf,
subtype-fpf2,
top_wf,
subtype_top,
fpf-join_wf,
fpf-compatible_wf,
all_wf,
subtype_rel_wf,
fpf_wf,
deq_wf,
bool_wf,
equal_functionality_wrt_subtype_rel2,
equal-wf-T-base,
bnot_wf,
not_wf,
eqtt_to_assert,
uiff_transitivity,
eqff_to_assert,
assert_of_bnot
\mforall{}[A:Type]. \mforall{}[eq:EqDecider(A)]. \mforall{}[B,C,D,E,F,G:A {}\mrightarrow{} Type]. \mforall{}[f:a:A fp-> B[a]]. \mforall{}[g:a:A fp-> C[a]].
\mforall{}[h:a:A fp-> D[a]].
(\{(h || f \moplus{} g) supposing (h || g and h || f)\}) supposing
((\mforall{}a:A. (E[a] \msubseteq{}r G[a])) and
(\mforall{}a:A. (F[a] \msubseteq{}r G[a])) and
(\mforall{}a:A. (D[a] \msubseteq{}r F[a])) and
(\mforall{}a:A. (D[a] \msubseteq{}r E[a])) and
(\mforall{}a:A. (C[a] \msubseteq{}r F[a])) and
(\mforall{}a:A. (B[a] \msubseteq{}r E[a])))
Date html generated:
2015_07_17-AM-11_12_00
Last ObjectModification:
2015_01_28-AM-07_45_36
Home
Index