Nuprl Lemma : fpf-restrict-dom
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[f:x:A fp-> B[x]]. ∀[P:A ─→ 𝔹]. ∀[x:A].
  uiff(↑x ∈ dom(fpf-restrict(f;P));{(↑x ∈ dom(f)) ∧ (↑(P x))})
Proof
Definitions occuring in Statement : 
fpf-restrict: fpf-restrict(f;P)
, 
fpf-dom: x ∈ dom(f)
, 
fpf: a:A fp-> B[a]
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
assert_witness, 
assert_wf, 
bool_wf, 
fpf_wf, 
deq_wf, 
domain_fpf_restrict_lemma, 
l_member_wf, 
fpf-domain_wf, 
subtype-fpf2, 
top_wf, 
subtype_top, 
member_filter, 
filter_wf5, 
subtype_rel_dep_function, 
subtype_rel_self, 
set_wf, 
iff_wf, 
member-fpf-domain, 
fpf-restrict_wf2, 
fpf-dom_wf
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:x:A  fp->  B[x]].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:A].
    uiff(\muparrow{}x  \mmember{}  dom(fpf-restrict(f;P));\{(\muparrow{}x  \mmember{}  dom(f))  \mwedge{}  (\muparrow{}(P  x))\})
Date html generated:
2015_07_17-AM-11_14_55
Last ObjectModification:
2015_01_28-AM-07_40_08
Home
Index