Nuprl Lemma : fpf-restrict-dom

[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[f:x:A fp-> B[x]]. ∀[P:A ─→ 𝔹]. ∀[x:A].
  uiff(↑x ∈ dom(fpf-restrict(f;P));{(↑x ∈ dom(f)) ∧ (↑(P x))})


Proof




Definitions occuring in Statement :  fpf-restrict: fpf-restrict(f;P) fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] guard: {T} so_apply: x[s] and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type
Lemmas :  assert_witness assert_wf bool_wf fpf_wf deq_wf domain_fpf_restrict_lemma l_member_wf fpf-domain_wf subtype-fpf2 top_wf subtype_top member_filter filter_wf5 subtype_rel_dep_function subtype_rel_self set_wf iff_wf member-fpf-domain fpf-restrict_wf2 fpf-dom_wf
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:x:A  fp->  B[x]].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:A].
    uiff(\muparrow{}x  \mmember{}  dom(fpf-restrict(f;P));\{(\muparrow{}x  \mmember{}  dom(f))  \mwedge{}  (\muparrow{}(P  x))\})



Date html generated: 2015_07_17-AM-11_14_55
Last ObjectModification: 2015_01_28-AM-07_40_08

Home Index