Nuprl Lemma : lnk-decl-dom-single

[l:IdLnk]. ∀[k:Knd]. ∀[tg:Id]. ∀[v:Top].  (k ∈ dom(lnk-decl(l;tg v)) rcv(l,tg) k)


Proof




Definitions occuring in Statement :  lnk-decl: lnk-decl(l;dt) fpf-single: v fpf-dom: x ∈ dom(f) eq_knd: b Kind-deq: KindDeq rcv: rcv(l,tg) Knd: Knd IdLnk: IdLnk Id: Id uall: [x:A]. B[x] top: Top sqequal: t
Lemmas :  map_cons_lemma map_nil_lemma deq_member_cons_lemma deq_member_nil_lemma eq_knd_wf rcv_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot top_wf Id_wf Knd_wf IdLnk_wf
\mforall{}[l:IdLnk].  \mforall{}[k:Knd].  \mforall{}[tg:Id].  \mforall{}[v:Top].    (k  \mmember{}  dom(lnk-decl(l;tg  :  v))  \msim{}  rcv(l,tg)  =  k)



Date html generated: 2015_07_17-AM-11_15_33
Last ObjectModification: 2015_01_28-AM-07_38_27

Home Index