Nuprl Lemma : member-rcvs-on

tg:Id. ∀links:IdLnk List. ∀k:Knd.  ((k ∈ Rcvs(tg) on links) ⇐⇒ (↑isrcv(k)) ∧ (tag(k) tg ∈ Id) ∧ (lnk(k) ∈ links))


Proof




Definitions occuring in Statement :  rcvs-on: Rcvs(tg) on links tagof: tag(k) lnk: lnk(k) isrcv: isrcv(k) Knd: Knd IdLnk: IdLnk Id: Id l_member: (x ∈ l) list: List assert: b all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q equal: t ∈ T
Lemmas :  Knd_wf list_wf IdLnk_wf Id_wf member_map rcv_wf l_member_wf map_wf iff_wf exists_wf assert_wf isrcv_wf tagof_wf lnk_wf subtype_base_sq union_subtype_base product_subtype_base atom2_subtype_base isrcv_rcv_lemma tag_rcv_lemma lnk_rcv_lemma
\mforall{}tg:Id.  \mforall{}links:IdLnk  List.  \mforall{}k:Knd.
    ((k  \mmember{}  Rcvs(tg)  on  links)  \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}isrcv(k))  \mwedge{}  (tag(k)  =  tg)  \mwedge{}  (lnk(k)  \mmember{}  links))



Date html generated: 2015_07_17-AM-09_12_25
Last ObjectModification: 2015_01_28-AM-07_56_38

Home Index