Nuprl Lemma : parallel-class-bind-left
∀[Info,T,S:Type]. ∀[X,Y:EClass(T)]. ∀[Z:T ─→ EClass(S)].  (X || Y >t> Z[t] = X >t> Z[t] || Y >t> Z[t] ∈ EClass(S))
Proof
Definitions occuring in Statement : 
parallel-class: X || Y
, 
bind-class: X >x> Y[x]
, 
eclass: EClass(A[eo; e])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
es-le-before_wf2, 
list-subtype-bag, 
es-le_wf, 
bag_wf, 
bag-combine_wf, 
bag-append_wf, 
eclass_wf, 
es-E_wf, 
event-ordering+_subtype, 
eo-forward_wf, 
member-eo-forward-E, 
equal_wf, 
Id_wf, 
es-loc_wf, 
bag-combine-append-right, 
iff_weakening_equal, 
bag-combine-append-left, 
event-ordering+_wf
\mforall{}[Info,T,S:Type].  \mforall{}[X,Y:EClass(T)].  \mforall{}[Z:T  {}\mrightarrow{}  EClass(S)].
    (X  ||  Y  >t>  Z[t]  =  X  >t>  Z[t]  ||  Y  >t>  Z[t])
Date html generated:
2015_07_17-PM-00_45_12
Last ObjectModification:
2015_02_04-PM-05_31_50
Home
Index