Nuprl Lemma : parallel-class-bind-left

[Info,T,S:Type]. ∀[X,Y:EClass(T)]. ∀[Z:T ─→ EClass(S)].  (X || Y >t> Z[t] X >t> Z[t] || Y >t> Z[t] ∈ EClass(S))


Proof




Definitions occuring in Statement :  parallel-class: || Y bind-class: X >x> Y[x] eclass: EClass(A[eo; e]) uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  es-le-before_wf2 list-subtype-bag es-le_wf bag_wf bag-combine_wf bag-append_wf eclass_wf es-E_wf event-ordering+_subtype eo-forward_wf member-eo-forward-E equal_wf Id_wf es-loc_wf bag-combine-append-right iff_weakening_equal bag-combine-append-left event-ordering+_wf
\mforall{}[Info,T,S:Type].  \mforall{}[X,Y:EClass(T)].  \mforall{}[Z:T  {}\mrightarrow{}  EClass(S)].
    (X  ||  Y  >t>  Z[t]  =  X  >t>  Z[t]  ||  Y  >t>  Z[t])



Date html generated: 2015_07_17-PM-00_45_12
Last ObjectModification: 2015_02_04-PM-05_31_50

Home Index