Nuprl Lemma : bag-combine-append-right
∀[A,B:Type]. ∀[F,G:A ⟶ bag(B)]. ∀[ba:bag(A)].  (⋃x∈ba.F[x] + G[x] = (⋃x∈ba.F[x] + ⋃x∈ba.G[x]) ∈ bag(B))
Proof
Definitions occuring in Statement : 
bag-combine: ⋃x∈bs.f[x], 
bag-append: as + bs, 
bag: bag(T), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bag: bag(T), 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
bag-combine: ⋃x∈bs.f[x], 
bag-append: as + bs, 
bag-map: bag-map(f;bs), 
bag-union: bag-union(bbs), 
top: Top, 
concat: concat(ll), 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
empty-bag: {}, 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Lemmas referenced : 
bag_wf, 
list_wf, 
equal_wf, 
bag-append_wf, 
bag-combine_wf, 
list-subtype-bag, 
permutation_wf, 
equal-wf-base, 
list_induction, 
map_nil_lemma, 
reduce_nil_lemma, 
list_ind_nil_lemma, 
empty-bag_wf, 
map_cons_lemma, 
reduce_cons_lemma, 
bag-append-assoc2, 
squash_wf, 
true_wf, 
bag-append-ac, 
bag-append-comm, 
iff_weakening_equal, 
quotient-member-eq, 
permutation-equiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
because_Cache, 
rename, 
hyp_replacement, 
applyLambdaEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
functionExtensionality, 
dependent_functionElimination, 
independent_functionElimination, 
productEquality, 
isect_memberEquality, 
axiomEquality, 
functionEquality, 
universeEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_pairFormation
Latex:
\mforall{}[A,B:Type].  \mforall{}[F,G:A  {}\mrightarrow{}  bag(B)].  \mforall{}[ba:bag(A)].    (\mcup{}x\mmember{}ba.F[x]  +  G[x]  =  (\mcup{}x\mmember{}ba.F[x]  +  \mcup{}x\mmember{}ba.G[x]))
Date html generated:
2017_10_01-AM-08_47_20
Last ObjectModification:
2017_07_26-PM-04_31_55
Theory : bags
Home
Index