Nuprl Lemma : simple-comb1_wf
∀[Info,A,B:Type]. ∀[F:bag(A) ─→ bag(B)]. ∀[X:EClass(A)]. (λx.F[x]|X| ∈ EClass(B))
Proof
Definitions occuring in Statement :
simple-comb1: λx.F[x]|X|
,
eclass: EClass(A[eo; e])
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ─→ B[x]
,
universe: Type
,
bag: bag(T)
Lemmas :
eclass_wf,
es-E_wf,
event-ordering+_subtype,
event-ordering+_wf,
bag_wf,
simple-comb_wf,
false_wf,
le_wf,
int_seg_wf,
select_wf,
cons_wf,
nil_wf,
length_wf,
length_nil,
non_neg_length,
length_wf_nil,
length_cons,
length_wf_nat
Latex:
\mforall{}[Info,A,B:Type]. \mforall{}[F:bag(A) {}\mrightarrow{} bag(B)]. \mforall{}[X:EClass(A)]. (\mlambda{}x.F[x]|X| \mmember{} EClass(B))
Date html generated:
2015_07_21-PM-02_50_53
Last ObjectModification:
2015_01_27-PM-07_32_12
Home
Index