Nuprl Lemma : simple-comb2_wf

[Info,A,B,C:Type].  ∀F:bag(A) ─→ bag(B) ─→ bag(C). ∀[X:EClass(A)]. ∀[Y:EClass(B)].  x,y.F[x;y]|X;Y| ∈ EClass(C))


Proof




Definitions occuring in Statement :  simple-comb2: λx,y.F[x; y]|X;Y| eclass: EClass(A[eo; e]) uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] member: t ∈ T function: x:A ─→ B[x] universe: Type bag: bag(T)
Lemmas :  simple-comb_wf select_wf cons_wf nil_wf length_wf length_nil non_neg_length length_wf_nil length_cons length_wf_nat int_seg_wf decidable__equal_int subtype_base_sq int_subtype_base bag_wf false_wf eclass_wf es-E_wf event-ordering+_subtype event-ordering+_wf

Latex:
\mforall{}[Info,A,B,C:Type].
    \mforall{}F:bag(A)  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(C).  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].    (\mlambda{}x,y.F[x;y]|X;Y|  \mmember{}  EClass(C))



Date html generated: 2015_07_21-PM-02_57_38
Last ObjectModification: 2015_01_29-PM-08_21_01

Home Index