Nuprl Lemma : flow-graph_wf
∀[T:Type]. ∀[S:Id List]. ∀[F:information-flow(T;S)]. ∀[G:Graph(S)].  (flow-graph(S;T;F;G) ∈ ℙ)
Proof
Definitions occuring in Statement : 
flow-graph: flow-graph(S;T;F;G)
, 
information-flow: information-flow(T;S)
, 
id-graph: Graph(S)
, 
Id: Id
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Lemmas : 
id-graph_wf, 
information-flow_wf, 
list_wf, 
Id_wf, 
l_member_wf, 
less_than_wf, 
length_wf, 
assert_wf, 
can-apply_wf, 
subtype_rel_dep_function, 
top_wf, 
subtype_rel_sum, 
set_wf, 
id-graph-edge_wf, 
all_wf
\mforall{}[T:Type].  \mforall{}[S:Id  List].  \mforall{}[F:information-flow(T;S)].  \mforall{}[G:Graph(S)].    (flow-graph(S;T;F;G)  \mmember{}  \mBbbP{})
Date html generated:
2015_07_17-AM-08_58_15
Last ObjectModification:
2015_01_27-PM-01_02_39
Home
Index