Nuprl Lemma : flow-graph_wf

[T:Type]. ∀[S:Id List]. ∀[F:information-flow(T;S)]. ∀[G:Graph(S)].  (flow-graph(S;T;F;G) ∈ ℙ)


Proof




Definitions occuring in Statement :  flow-graph: flow-graph(S;T;F;G) information-flow: information-flow(T;S) id-graph: Graph(S) Id: Id list: List uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Lemmas :  id-graph_wf information-flow_wf list_wf Id_wf l_member_wf less_than_wf length_wf assert_wf can-apply_wf subtype_rel_dep_function top_wf subtype_rel_sum set_wf id-graph-edge_wf all_wf
\mforall{}[T:Type].  \mforall{}[S:Id  List].  \mforall{}[F:information-flow(T;S)].  \mforall{}[G:Graph(S)].    (flow-graph(S;T;F;G)  \mmember{}  \mBbbP{})



Date html generated: 2015_07_17-AM-08_58_15
Last ObjectModification: 2015_01_27-PM-01_02_39

Home Index