Nuprl Lemma : st-next_wf
∀[T:Id ─→ Type]. ∀[tab:secret-table(T)].  (next(tab) ∈ ℕ||tab||  × Atom1?)
Proof
Definitions occuring in Statement : 
st-next: next(tab)
, 
st-length: ||tab|| 
, 
secret-table: secret-table(T)
, 
Id: Id
, 
int_seg: {i..j-}
, 
atom: Atom$n
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
union: left + right
, 
natural_number: $n
, 
universe: Type
Lemmas : 
secret-table_wf, 
Id_wf, 
lt_int_wf, 
st-ptr_wf, 
nat_wf, 
st-length_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
less_than_wf, 
st-atom_wf, 
unit_wf2, 
le_int_wf, 
le_wf, 
bnot_wf, 
it_wf, 
int_seg_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int
\mforall{}[T:Id  {}\mrightarrow{}  Type].  \mforall{}[tab:secret-table(T)].    (next(tab)  \mmember{}  \mBbbN{}||tab||    \mtimes{}  Atom1?)
Date html generated:
2015_07_17-AM-08_57_12
Last ObjectModification:
2015_01_27-PM-01_03_03
Home
Index