Nuprl Lemma : member-parallel-class-bool

[Info,A:Type]. ∀[X,Y:EClass(A)]. ∀[es:EO+(Info)]. ∀[e:E].  (e ∈b || e ∈b X ∨be ∈b Y)


Proof




Definitions occuring in Statement :  parallel-class: || Y member-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E bor: p ∨bq uall: [x:A]. B[x] universe: Type sqequal: t
Lemmas :  bool_cases_sqequal member-eclass_wf parallel-class_wf sqequal-tt-to-assert bor_wf sqequal-ff-to-assert subtype_base_sq bool_wf bool_subtype_base btrue_wf ppcc-problem iff_imp_equal_bool member-parallel-class true_wf false_wf iff_weakening_equal es-E_wf event-ordering+_subtype event-ordering+_wf eclass_wf

Latex:
\mforall{}[Info,A:Type].  \mforall{}[X,Y:EClass(A)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].    (e  \mmember{}\msubb{}  X  ||  Y  \msim{}  e  \mmember{}\msubb{}  X  \mvee{}\msubb{}e  \mmember{}\msubb{}  Y)



Date html generated: 2015_07_23-AM-11_26_57
Last ObjectModification: 2015_02_04-PM-04_45_04

Home Index