Nuprl Lemma : member-parallel-class-bool
∀[Info,A:Type]. ∀[X,Y:EClass(A)]. ∀[es:EO+(Info)]. ∀[e:E].  (e ∈b X || Y ~ e ∈b X ∨be ∈b Y)
Proof
Definitions occuring in Statement : 
parallel-class: X || Y
, 
member-eclass: e ∈b X
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
bor: p ∨bq
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
sqequal: s ~ t
Lemmas : 
bool_cases_sqequal, 
member-eclass_wf, 
parallel-class_wf, 
sqequal-tt-to-assert, 
bor_wf, 
sqequal-ff-to-assert, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
btrue_wf, 
ppcc-problem, 
iff_imp_equal_bool, 
member-parallel-class, 
true_wf, 
false_wf, 
iff_weakening_equal, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
eclass_wf
Latex:
\mforall{}[Info,A:Type].  \mforall{}[X,Y:EClass(A)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].    (e  \mmember{}\msubb{}  X  ||  Y  \msim{}  e  \mmember{}\msubb{}  X  \mvee{}\msubb{}e  \mmember{}\msubb{}  Y)
Date html generated:
2015_07_23-AM-11_26_57
Last ObjectModification:
2015_02_04-PM-04_45_04
Home
Index