Nuprl Lemma : member-parallel-class
∀[Info,A:Type]. ∀[X,Y:EClass(A)]. ∀[es:EO+(Info)]. ∀[e:E].  uiff(↑e ∈b X || Y;↑(e ∈b X ∨be ∈b Y))
Proof
Definitions occuring in Statement : 
parallel-class: X || Y
, 
member-eclass: e ∈b X
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
bor: p ∨bq
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Lemmas : 
iff_transitivity, 
assert_wf, 
bnot_wf, 
eq_int_wf, 
bag-size_wf, 
bag-append_wf, 
nat_wf, 
not_wf, 
equal-wf-T-base, 
iff_weakening_uiff, 
assert_of_bnot, 
assert_of_eq_int, 
assert_of_bor, 
bag-size-append, 
bor_wf, 
or_wf
Latex:
\mforall{}[Info,A:Type].  \mforall{}[X,Y:EClass(A)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].    uiff(\muparrow{}e  \mmember{}\msubb{}  X  ||  Y;\muparrow{}(e  \mmember{}\msubb{}  X  \mvee{}\msubb{}e  \mmember{}\msubb{}  Y))
Date html generated:
2015_07_23-AM-11_26_55
Last ObjectModification:
2015_01_28-PM-11_15_41
Home
Index