Nuprl Lemma : sqequal-ff-to-assert

[t:𝔹]. uiff(t ff;¬↑t)


Proof




Definitions occuring in Statement :  assert: b bfalse: ff bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False assert: b ifthenelse: if then else fi  bfalse: ff prop: iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) all: x:A. B[x] guard: {T}
Lemmas referenced :  false_wf assert_wf bool_sq subtype_base_sq bool_subtype_base iff_imp_equal_bool bfalse_wf not_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation thin hypothesis sqequalRule sqequalHypSubstitution voidElimination lemma_by_obid independent_functionElimination isectElimination hypothesisEquality lambdaEquality dependent_functionElimination because_Cache sqequalIntensionalEquality instantiate independent_isectElimination equalityTransitivity equalitySymmetry sqequalAxiom productElimination independent_pairEquality isect_memberEquality

Latex:
\mforall{}[t:\mBbbB{}].  uiff(t  \msim{}  ff;\mneg{}\muparrow{}t)



Date html generated: 2016_05_15-PM-03_14_32
Last ObjectModification: 2015_12_27-PM-01_02_16

Theory : general


Home Index