Nuprl Lemma : base4-rep_wf

n:. (base4-rep(n)  4 List)


Proof not projected




Definitions occuring in Statement :  base4-rep: base4-rep(n) int_seg: {i..j} nat: all: x:A. B[x] member: t  T list: type List natural_number: $n
Definitions :  equal: s = t int_seg: {i..j} list: type List member: t  T callbyvalueall: callbyvalueall implies: P  Q false: False not: A le: A  B int: set: {x:A| B[x]}  nat: base4-rep: base4-rep(n) function: x:A  B[x] all: x:A. B[x] uall: [x:A]. B[x] isect: x:A. B[x] subtype_rel: A r B uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a less_than: a < b ge: i  j  strong-subtype: strong-subtype(A;B) vr_base4-ext fpf: a:A fp-B[a] eclass: EClass(A[eo; e]) tactic: Error :tactic,  pair: <a, b> has-valueall: has-valueall(a) pi1: fst(t) rationals: apply: f a exists: x:A. B[x] natural_number: $n sum: (f[x] | x < k) length: ||as|| multiply: n * m exp: i^n select: l[i] top: Top subtype: S  T quotient: x,y:A//B[x; y] prop: universe: Type so_lambda: x.t[x] lambda: x.A[x] nil: [] real: void: Void nat_plus: int_nzero: lelt: i  j < k es-E-interface: E(X) grp_car: |g| limited-type: LimitedType b-union: A  B bool: btrue: tt union: left + right ifthenelse: if b then t else f fi  sq_type: SQType(T) guard: {T} cons: [car / cdr] fpf-cap: f(x)?z true: True bag: bag(T) isect2: T1  T2 dataflow: dataflow(A;B) fset: FSet{T} record: record(x.T[x]) record+: record+ labeled-graph: LabeledGraph(T) ldag: LabeledDAG(T) iff: P  Q or: P  Q rev_implies: P  Q tag-by: zT bfalse: ff tunion: x:A.B[x] so_lambda: x y.t[x; y] qeq: qeq(r;s) equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) class-program: ClassProgram(T) ma-state: State(ds) deq: EqDecider(T) fpf-sub: f  g intensional-universe: IType bnot: b assert: b bor: p q band: p  q bimplies: p  q es-ble: e loc e' es-bless: e <loc e' es-eq-E: e = e' eq_lnk: a = b eq_id: a = b deq-all-disjoint: deq-all-disjoint(eq;ass;bs) deq-disjoint: deq-disjoint(eq;as;bs) deq-member: deq-member(eq;x;L) q_le: q_le(r;s) q_less: q_less(r;s) l_member: (x  l) Knd: Knd so_apply: x[s] locl: locl(a) append: as @ bs Id: Id atom: Atom$n valueall-type: valueall-type(T) rec: rec(x.A[x]) atom: Atom
Lemmas :  int-valueall-type set-valueall-type list-valueall-type valueall-type_wf Id_wf Id-has-valueall false_wf int-equal-in-rationals rev_implies_wf iff_wf assert-qeq iff_weakening_uiff iff_functionality_wrt_iff assert_wf true_wf iff_imp_equal_bool qeq_wf intensional-universe_wf refl_wf sym_wf trans_wf equiv_rel_wf qeq_wf2 quotient_wf tunion_wf bfalse_wf subtype_rel_wf ifthenelse_wf btrue_wf bool_wf b-union_wf int_nzero_wf Error :pi1_wf,  int-rational rational-has-value pi1_wf_top vr_base4-ext nat_properties sum_wf length_wf_nat top_wf exp_wf2 le_wf select_wf int_seg_properties length_wf rationals_wf int_seg_wf member_wf nat_wf

\mforall{}n:\mBbbN{}.  (base4-rep(n)  \mmember{}  \mBbbN{}4  List)


Date html generated: 2012_02_20-PM-03_31_29
Last ObjectModification: 2012_02_02-PM-01_55_02

Home Index